The concentration-compactness/rigidity method for critical dispersive and wave equations
نویسنده
چکیده
منابع مشابه
Concentration Compactness for the Critical Maxwell-klein-gordon Equation
We prove global regularity, scattering and a priori bounds for the energy critical MaxwellKlein-Gordon equation relative to the Coulomb gauge on (1 + 4)-dimensional Minkowski space. The proof is based upon a modified Bahouri-Gérard profile decomposition [1] and a concentration compactness/rigidity argument by Kenig-Merle [5], following the method developed by the first author and Schlag [10] in...
متن کاملSound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length
In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...
متن کاملar X iv : m at h / 06 08 29 3 v 1 [ m at h . A P ] 1 1 A ug 2 00 6 GLOBAL BEHAVIOUR OF NONLINEAR DISPERSIVE AND WAVE EQUATIONS
We survey recent advances in the analysis of the large data global (and asymptotic) behaviour of nonlinear dispersive equations such as the non-linear wave (NLW), nonlinear Schrödinger (NLS), wave maps (WM), Schrödinger maps (SM), generalised Korteweg-de Vries (gKdV), Maxwell-Klein-Gordon (MKG), and Yang-Mills (YM) equations. The classification of the nonlin-earity as subcritical (weaker than t...
متن کاملComplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملAn alternative approach to regularity for the Navier-Stokes equations in a critical space
In this paper we present an alternative viewpoint on recent studies of regularity of solutions to the Navier-Stokes equations in critical spaces. In particular, we prove that mild solutions which remain bounded in the space Ḣ 1 2 do not become singular in finite time, a result which was proved in a more general setting by L. Escauriaza, G. Seregin and V. Šverák using a different approach. We us...
متن کامل